binomial p2

This commit is contained in:
Felipe 2025-12-08 15:49:41 -03:00
parent d6ed95606e
commit 86f822bf34
Signed by: pitbuster
SSH key fingerprint: SHA256:HDYu2Pm4/TmSX8GBwV49UvFWr1Ljg8XlHxKeCpjJpOk
4 changed files with 316 additions and 115 deletions

View file

@ -10,4 +10,4 @@ hyper-description = Hypergeometric distribution measures the probability of gett
success-probability = Success probability
trials-number = Number of trials
successes-number = Number of successes
binom-description = .
binom-description = Binomial distribution measures the probability of getting a given amount of successes in a sequence of experiments. For example, if you flip 5 (number of trials = 5) balanced coins (success probability = 0.5), the distribution describes the probability of having a given number of heads (successes number = X).

View file

@ -10,4 +10,4 @@ hyper-description = La distribución hipergeométrica mide la probabilidad de ob
success-probability = Probabilidad de éxito
trials-number = Número de intentos
successes-number = Número de éxitos
binom-description = .
binom-description = La distribución binomial mide la probabilidad de obtener un cierto número de éxitos en una secuencia de experimentos. Por ejemplo, si lanzas 5 (número de intentos = 5) monedas justas (probabilidad de éxito = 0.5), la distribución describe la probabilidad de obtener un cierto número de monedas (número de éxitos = X).

View file

@ -2,79 +2,179 @@
use std::{collections::HashMap, iter::repeat};
#[derive(Default)]
#[derive(Debug)]
pub struct HyperGeometricInput {
population_size: u8,
successes: u8,
sample_size: u8,
sample_successes: u8,
}
impl HyperGeometricInput {
pub fn new(
population_size: u8,
successes: u8,
sample_size: u8,
sample_successes: u8,
) -> Option<Self> {
if successes > population_size
|| sample_size > population_size
|| sample_successes > sample_size
{
None
} else {
Some(Self {
population_size,
successes,
sample_size,
sample_successes,
})
}
}
}
/// Result of hypergeometric probability calculation.
#[derive(Default, Debug, PartialEq)]
pub struct HyperGeometricProb {
/// Probability of getting exactly X successes in the sample.
pub exactly: f64,
/// Probability of getting strictly less than X successes in the sample.
pub less_than: f64,
/// Probability of getting less than or exactly X successes in the sample.
pub less_or_equal: f64,
/// Probability of getting strictly more X successes in the sample.
pub greater_than: f64,
/// Probability of getting more than or exactly X successes in the sample.
pub greater_or_equal: f64,
}
pub fn hyper_geometric(
population_size: u8,
successes: u8,
sample_size: u8,
sample_successes: u8,
) -> Option<HyperGeometricProb> {
if successes > population_size
|| sample_size > population_size
|| sample_successes > sample_size
pub fn hyper_geometric(input: HyperGeometricInput) -> HyperGeometricProb {
let exactly = hyper_geometric_exactly(&input);
let (less_than, less_or_equal, greater_or_equal, greater_than) = if input.sample_successes
< input.sample_size / 2
{
None
let less_than = (0..input.sample_successes)
.map(|i| {
hyper_geometric_exactly(&HyperGeometricInput {
population_size: input.population_size,
successes: input.successes,
sample_size: input.sample_size,
sample_successes: i,
})
})
.sum::<f64>()
.abs();
let less_or_equal = less_than + exactly;
let greater_or_equal = (1.0 - less_than).abs();
let greater_than = (1.0 - less_or_equal).abs();
(less_than, less_or_equal, greater_or_equal, greater_than)
} else {
let exactly =
hyper_geometric_exactly(population_size, successes, sample_size, sample_successes);
let (less_than, less_or_equal, greater_or_equal, greater_than) =
if sample_successes < sample_size / 2 {
let less_than = (0..sample_successes)
.map(|i| hyper_geometric_exactly(population_size, successes, sample_size, i))
.sum::<f64>()
.abs();
let less_or_equal = less_than + exactly;
let greater_or_equal = (1.0 - less_than).abs();
let greater_than = (1.0 - less_or_equal).abs();
(less_than, less_or_equal, greater_or_equal, greater_than)
} else {
let greater_than = (sample_successes + 1..=sample_size)
.map(|i| hyper_geometric_exactly(population_size, successes, sample_size, i))
.sum::<f64>()
.abs();
let greater_or_equal = greater_than + exactly;
let less_or_equal = (1.0 - greater_than).abs();
let less_than = (1.0 - greater_or_equal).abs();
(less_than, less_or_equal, greater_or_equal, greater_than)
};
Some(HyperGeometricProb {
exactly,
less_than,
less_or_equal,
greater_than,
greater_or_equal,
})
let greater_than = (input.sample_successes + 1..=input.sample_size.min(input.successes))
.map(|i| {
hyper_geometric_exactly(&HyperGeometricInput {
population_size: input.population_size,
successes: input.successes,
sample_size: input.sample_size,
sample_successes: i,
})
})
.sum::<f64>()
.abs();
let greater_or_equal = greater_than + exactly;
let less_or_equal = (1.0 - greater_than).abs();
let less_than = (1.0 - greater_or_equal).abs();
(less_than, less_or_equal, greater_or_equal, greater_than)
};
HyperGeometricProb {
exactly,
less_than,
less_or_equal,
greater_than,
greater_or_equal,
}
}
#[derive(Default)]
pub struct BinomialProb {
pub exactly: f64,
pub less_than: f64,
pub less_or_equal: f64,
pub greater_than: f64,
pub greater_or_equal: f64,
}
pub fn binomial(
pub struct BinomialInput {
success_probability: f64,
trials_number: u8,
successes_number: u8,
) -> Option<BinomialProb> {
if successes_number > trials_number {
None
} else {
let (p_powers, pc_powers) = powers(success_probability, trials_number);
let exactly = binom_exactly(success_probability, trials_number, successes_number);
None
}
impl BinomialInput {
pub fn new(success_probability: f64, trials_number: u8, successes_number: u8) -> Option<Self> {
if success_probability < 0.0
|| success_probability > 1.0
|| successes_number > trials_number
{
None
} else {
Some(Self {
success_probability,
trials_number,
successes_number,
})
}
}
}
#[derive(Default, Debug, PartialEq)]
pub struct BinomialProb {
pub exactly: f64,
pub less_than: f64,
pub less_or_equal: f64,
pub greater_than: f64,
pub greater_or_equal: f64,
}
pub fn binomial(input: BinomialInput) -> BinomialProb {
let (p_powers, pc_powers) = powers(input.success_probability, input.trials_number);
let exactly = binomial_exactly(&input, &p_powers, &pc_powers);
let (less_than, less_or_equal, greater_or_equal, greater_than) =
if input.successes_number < input.trials_number / 2 {
let less_than = (0..input.successes_number)
.map(|i| {
binomial_exactly(
&BinomialInput {
success_probability: input.success_probability,
trials_number: input.trials_number,
successes_number: i,
},
&p_powers,
&pc_powers,
)
})
.sum::<f64>()
.abs();
let less_or_equal = less_than + exactly;
let greater_or_equal = (1.0 - less_than).abs();
let greater_than = (1.0 - less_or_equal).abs();
(less_than, less_or_equal, greater_or_equal, greater_than)
} else {
let greater_than = (input.successes_number + 1..=input.trials_number)
.map(|i| {
binomial_exactly(
&BinomialInput {
success_probability: input.success_probability,
trials_number: input.trials_number,
successes_number: i,
},
&p_powers,
&pc_powers,
)
})
.sum::<f64>()
.abs();
let greater_or_equal = greater_than + exactly;
let less_or_equal = (1.0 - greater_than).abs();
let less_than = (1.0 - greater_or_equal).abs();
(less_than, less_or_equal, greater_or_equal, greater_than)
};
BinomialProb {
exactly,
less_than,
less_or_equal,
greater_than,
greater_or_equal,
}
}
@ -83,65 +183,49 @@ pub fn binomial(
///
/// The formula is choose(successes, sample_successes) * choose(population_size - successes,
/// sample_size - sample_successes) / choose(population_size, sample_size)
fn hyper_geometric_exactly(
population_size: u8,
successes: u8,
sample_size: u8,
sample_successes: u8,
) -> f64 {
if population_size == successes {
return if sample_successes == sample_size {
fn hyper_geometric_exactly(input: &HyperGeometricInput) -> f64 {
if input.population_size == input.successes {
return if input.sample_successes == input.sample_size {
1.0
} else {
0.0
};
}
if successes == 0 {
return if sample_successes == 0 { 1.0 } else { 0.0 };
if input.successes == 0 {
return if input.sample_successes == 0 {
1.0
} else {
0.0
};
}
// On top we have: successes!, (population_size - successes)!, sample_size! and
// (population_size - sample_size)!
let top_factors = (1..=successes)
.chain(1..=(population_size - successes))
.chain(1..=sample_size)
.chain(1..=(population_size - sample_size))
let top_factors = (1..=input.successes)
.chain(1..=(input.population_size - input.successes))
.chain(1..=input.sample_size)
.chain(1..=(input.population_size - input.sample_size))
.flat_map(|n| factorize(n))
.fold(HashMap::<u8, u8>::new(), |mut counts, i| {
*counts.entry(i).or_default() += 1;
counts
});
.fold(HashMap::<u8, u8>::new(), group_factors);
// On bottom we have: sample_successes!, (successes - sample_successes)!
// (sample_size - sample_successes)!, (population_size - successes - sample_size + sample_successes)!
// and population_size!
let bot_factors = (1..=sample_successes)
.chain(1..=(successes - sample_successes))
.chain(1..=(sample_size - sample_successes))
let bot_factors = (1..=input.sample_successes)
.chain(1..=(input.successes - input.sample_successes))
.chain(1..=(input.sample_size - input.sample_successes))
.chain(
1..=((population_size as u16 + sample_successes as u16
- successes as u16
- sample_size as u16) as u8),
1..=((input.population_size as u16 + input.sample_successes as u16
- input.successes as u16
- input.sample_size as u16) as u8),
)
.chain(1..=population_size)
.chain(1..=input.population_size)
.flat_map(|n| factorize(n))
.fold(HashMap::<u8, u8>::new(), |mut counts, i| {
counts.entry(i).and_modify(|count| *count += 1).or_insert(1);
counts
});
.fold(HashMap::<u8, u8>::new(), group_factors);
let (top_factors, bot_factors) = simplify(top_factors, bot_factors);
let top_product: f64 = top_factors
.into_iter()
.flat_map(|(f, count)| repeat(f).take(count as usize))
.map(|f| f as f64)
.product();
let bot_product: f64 = bot_factors
.into_iter()
.flat_map(|(f, count)| repeat(f).take(count as usize))
.map(|f| f as f64)
.product();
let top_product = product(top_factors);
let bot_product = product(bot_factors);
top_product / bot_product
}
@ -149,19 +233,55 @@ fn hyper_geometric_exactly(
/// Computes the probability of getting exactly `successes_number` within `trials_number` given
/// that the success probability is `success_probability`.
///
/// The formula is choose(successes_number, trials_number) * (success_probability)^successes_number
/// The formula is choose(trials_number, successes_number) * (success_probability)^successes_number
/// * (1 - success_probability)^(trials_number - successes_number)
fn binom_exactly(success_probability: f64, trials_number: u8, successes_number: u8) -> f64 {
0.0
fn binomial_exactly(input: &BinomialInput, p_powers: &[f64], pc_powers: &[f64]) -> f64 {
if input.success_probability == 0.0 {
return if input.successes_number == 0 {
1.0
} else {
0.0
};
}
if input.success_probability == 1.0 {
return if input.successes_number == input.trials_number {
1.0
} else {
0.0
};
}
choose(input.trials_number, input.successes_number)
* p_powers[input.successes_number as usize]
* pc_powers[(input.trials_number - input.successes_number) as usize]
}
fn powers(p: f64, N: u8) -> (Vec<f64>, Vec<f64>) {
let mut p_powers = Vec::with_capacity((N + 1) as usize);
let mut pc_powers = Vec::with_capacity((N + 1) as usize);
fn choose(n: u8, k: u8) -> f64 {
// On top we have: n!
let top_factors = (1..=n)
.flat_map(|n| factorize(n))
.fold(HashMap::<u8, u8>::new(), group_factors);
// On bottom we have: k!, (n - k)!
let bot_factors = (1..=k)
.chain(1..=(n - k))
.flat_map(|n| factorize(n))
.fold(HashMap::<u8, u8>::new(), group_factors);
let (top_factors, bot_factors) = simplify(top_factors, bot_factors);
let top_product = product(top_factors);
let bot_product = product(bot_factors);
top_product / bot_product
}
fn powers(p: f64, n: u8) -> (Vec<f64>, Vec<f64>) {
let mut p_powers = Vec::with_capacity((n + 1) as usize);
let mut pc_powers = Vec::with_capacity((n + 1) as usize);
let mut p_power = 1.0;
let mut pc_power = 1.0;
for _ in 0..N + 1 {
for _ in 0..n + 1 {
p_powers.push(p_power);
pc_powers.push(pc_power);
p_power = p_power * p;
@ -170,6 +290,19 @@ fn powers(p: f64, N: u8) -> (Vec<f64>, Vec<f64>) {
(p_powers, pc_powers)
}
fn group_factors(mut counts: HashMap<u8, u8>, i: u8) -> HashMap<u8, u8> {
*counts.entry(i).or_default() += 1;
counts
}
fn product(factors: HashMap<u8, u8>) -> f64 {
factors
.into_iter()
.flat_map(|(f, count)| repeat(f).take(count as usize))
.map(|f| f as f64)
.product()
}
/// Simplify factors for a fraction.
///
/// This assumes factors are already prime factors.
@ -259,7 +392,10 @@ fn factorize(n: u8) -> FactorIter<'static> {
#[cfg(test)]
mod test {
use crate::calc::hyper_geometric_exactly;
use crate::calc::{
BinomialInput, BinomialProb, HyperGeometricInput, HyperGeometricProb, binomial,
binomial_exactly, hyper_geometric, hyper_geometric_exactly, powers,
};
use super::factorize;
@ -280,18 +416,80 @@ mod test {
#[test]
fn test_hypergeometric_exact_all_successes() {
assert_eq!(hyper_geometric_exactly(10, 10, 5, 5), 1.0);
assert_eq!(hyper_geometric_exactly(10, 10, 5, 4), 0.0);
let input = &HyperGeometricInput::new(10, 10, 5, 5).unwrap();
assert_eq!(hyper_geometric_exactly(input), 1.0);
let input = &HyperGeometricInput::new(10, 10, 5, 4).unwrap();
assert_eq!(hyper_geometric_exactly(input), 0.0);
}
#[test]
fn test_hypergeometric_exact_no_successes() {
assert_eq!(hyper_geometric_exactly(10, 0, 5, 0), 1.0);
assert_eq!(hyper_geometric_exactly(10, 0, 5, 1), 0.0);
let input = &HyperGeometricInput::new(10, 0, 5, 0).unwrap();
assert_eq!(hyper_geometric_exactly(input), 1.0);
let input = &HyperGeometricInput::new(10, 0, 5, 1).unwrap();
assert_eq!(hyper_geometric_exactly(input), 0.0);
}
#[test]
fn test_hypergeometric_exact() {
assert_eq!(hyper_geometric_exactly(10, 3, 5, 2), 5.0 / 12.0);
let input = &HyperGeometricInput::new(10, 3, 5, 2).unwrap();
assert_eq!(hyper_geometric_exactly(input), 5.0 / 12.0);
}
#[test]
fn test_hypergeometric_aces_poker() {
let input = HyperGeometricInput::new(52, 4, 5, 4).unwrap();
let exact = 1.846892603195124e-5;
assert_eq!(
hyper_geometric(input),
HyperGeometricProb {
exactly: exact,
less_than: 1.0 - exact,
less_or_equal: 1.0,
greater_than: 0.0,
greater_or_equal: exact
}
);
}
#[test]
fn test_binom_exact_all_success() {
let (p_powers, pc_powers) = powers(1.0, 5);
let input = &BinomialInput::new(1.0, 5, 5).unwrap();
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 1.0);
let input = &BinomialInput::new(1.0, 5, 4).unwrap();
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 0.0);
}
#[test]
fn test_binom_exact_no_success() {
let (p_powers, pc_powers) = powers(0.0, 5);
let input = &BinomialInput::new(0.0, 5, 0).unwrap();
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 1.0);
let input = &BinomialInput::new(0.0, 5, 1).unwrap();
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 0.0);
}
#[test]
fn test_binomial_exact() {
let (p_powers, pc_powers) = powers(0.5, 5);
let input = &BinomialInput::new(0.5, 5, 3).unwrap();
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 10.0 / 32.0);
}
#[test]
fn test_binomial() {
// 10.0 / 32.0
let input = BinomialInput::new(0.5, 5, 3).unwrap();
assert_eq!(
binomial(input),
BinomialProb {
exactly: 10.0 / 32.0,
less_than: 16.0 / 32.0,
less_or_equal: 26.0 / 32.0,
greater_than: 6.0 / 32.0,
greater_or_equal: 16.0 / 32.0,
}
);
}
}

View file

@ -6,7 +6,7 @@ use leptos::prelude::{
use leptos::{IntoView, component, view};
use leptos_fluent::move_tr;
use crate::calc::{binomial, hyper_geometric};
use crate::calc::{BinomialInput, HyperGeometricInput, binomial, hyper_geometric};
#[component]
pub fn HyperCalculator() -> impl IntoView {
@ -15,12 +15,13 @@ pub fn HyperCalculator() -> impl IntoView {
let (sample, set_sample) = signal(0u8);
let (sample_successes, set_sample_successes) = signal(0u8);
let result = move || {
hyper_geometric(
HyperGeometricInput::new(
population.get(),
successes.get(),
sample.get(),
sample_successes.get(),
)
.map(hyper_geometric)
.unwrap_or_default()
};
view! {
@ -119,11 +120,12 @@ pub fn BinomCalculator() -> impl IntoView {
let (trials_number, set_trials_number) = signal(0u8);
let (successes_number, set_successes_number) = signal(0u8);
let result = move || {
binomial(
BinomialInput::new(
success_probability.get(),
trials_number.get(),
successes_number.get(),
)
.map(binomial)
.unwrap_or_default()
};
view! {
@ -135,6 +137,7 @@ pub fn BinomCalculator() -> impl IntoView {
type="number"
min=0
max=1
prop:step=0.1
prop:value=success_probability
on:input:target=move |ev| {
set_success_probability.set(ev.target().value().parse().unwrap_or_default())