binomial p2
This commit is contained in:
parent
d6ed95606e
commit
86f822bf34
4 changed files with 316 additions and 115 deletions
|
|
@ -10,4 +10,4 @@ hyper-description = Hypergeometric distribution measures the probability of gett
|
|||
success-probability = Success probability
|
||||
trials-number = Number of trials
|
||||
successes-number = Number of successes
|
||||
binom-description = .
|
||||
binom-description = Binomial distribution measures the probability of getting a given amount of successes in a sequence of experiments. For example, if you flip 5 (number of trials = 5) balanced coins (success probability = 0.5), the distribution describes the probability of having a given number of heads (successes number = X).
|
||||
|
|
|
|||
|
|
@ -10,4 +10,4 @@ hyper-description = La distribución hipergeométrica mide la probabilidad de ob
|
|||
success-probability = Probabilidad de éxito
|
||||
trials-number = Número de intentos
|
||||
successes-number = Número de éxitos
|
||||
binom-description = .
|
||||
binom-description = La distribución binomial mide la probabilidad de obtener un cierto número de éxitos en una secuencia de experimentos. Por ejemplo, si lanzas 5 (número de intentos = 5) monedas justas (probabilidad de éxito = 0.5), la distribución describe la probabilidad de obtener un cierto número de monedas (número de éxitos = X).
|
||||
|
|
|
|||
418
src/calc.rs
418
src/calc.rs
|
|
@ -2,79 +2,179 @@
|
|||
|
||||
use std::{collections::HashMap, iter::repeat};
|
||||
|
||||
#[derive(Default)]
|
||||
#[derive(Debug)]
|
||||
pub struct HyperGeometricInput {
|
||||
population_size: u8,
|
||||
successes: u8,
|
||||
sample_size: u8,
|
||||
sample_successes: u8,
|
||||
}
|
||||
|
||||
impl HyperGeometricInput {
|
||||
pub fn new(
|
||||
population_size: u8,
|
||||
successes: u8,
|
||||
sample_size: u8,
|
||||
sample_successes: u8,
|
||||
) -> Option<Self> {
|
||||
if successes > population_size
|
||||
|| sample_size > population_size
|
||||
|| sample_successes > sample_size
|
||||
{
|
||||
None
|
||||
} else {
|
||||
Some(Self {
|
||||
population_size,
|
||||
successes,
|
||||
sample_size,
|
||||
sample_successes,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Result of hypergeometric probability calculation.
|
||||
#[derive(Default, Debug, PartialEq)]
|
||||
pub struct HyperGeometricProb {
|
||||
/// Probability of getting exactly X successes in the sample.
|
||||
pub exactly: f64,
|
||||
/// Probability of getting strictly less than X successes in the sample.
|
||||
pub less_than: f64,
|
||||
/// Probability of getting less than or exactly X successes in the sample.
|
||||
pub less_or_equal: f64,
|
||||
/// Probability of getting strictly more X successes in the sample.
|
||||
pub greater_than: f64,
|
||||
/// Probability of getting more than or exactly X successes in the sample.
|
||||
pub greater_or_equal: f64,
|
||||
}
|
||||
|
||||
pub fn hyper_geometric(
|
||||
population_size: u8,
|
||||
successes: u8,
|
||||
sample_size: u8,
|
||||
sample_successes: u8,
|
||||
) -> Option<HyperGeometricProb> {
|
||||
if successes > population_size
|
||||
|| sample_size > population_size
|
||||
|| sample_successes > sample_size
|
||||
pub fn hyper_geometric(input: HyperGeometricInput) -> HyperGeometricProb {
|
||||
let exactly = hyper_geometric_exactly(&input);
|
||||
let (less_than, less_or_equal, greater_or_equal, greater_than) = if input.sample_successes
|
||||
< input.sample_size / 2
|
||||
{
|
||||
None
|
||||
let less_than = (0..input.sample_successes)
|
||||
.map(|i| {
|
||||
hyper_geometric_exactly(&HyperGeometricInput {
|
||||
population_size: input.population_size,
|
||||
successes: input.successes,
|
||||
sample_size: input.sample_size,
|
||||
sample_successes: i,
|
||||
})
|
||||
})
|
||||
.sum::<f64>()
|
||||
.abs();
|
||||
let less_or_equal = less_than + exactly;
|
||||
let greater_or_equal = (1.0 - less_than).abs();
|
||||
let greater_than = (1.0 - less_or_equal).abs();
|
||||
(less_than, less_or_equal, greater_or_equal, greater_than)
|
||||
} else {
|
||||
let exactly =
|
||||
hyper_geometric_exactly(population_size, successes, sample_size, sample_successes);
|
||||
let (less_than, less_or_equal, greater_or_equal, greater_than) =
|
||||
if sample_successes < sample_size / 2 {
|
||||
let less_than = (0..sample_successes)
|
||||
.map(|i| hyper_geometric_exactly(population_size, successes, sample_size, i))
|
||||
.sum::<f64>()
|
||||
.abs();
|
||||
let less_or_equal = less_than + exactly;
|
||||
let greater_or_equal = (1.0 - less_than).abs();
|
||||
let greater_than = (1.0 - less_or_equal).abs();
|
||||
(less_than, less_or_equal, greater_or_equal, greater_than)
|
||||
} else {
|
||||
let greater_than = (sample_successes + 1..=sample_size)
|
||||
.map(|i| hyper_geometric_exactly(population_size, successes, sample_size, i))
|
||||
.sum::<f64>()
|
||||
.abs();
|
||||
let greater_or_equal = greater_than + exactly;
|
||||
let less_or_equal = (1.0 - greater_than).abs();
|
||||
let less_than = (1.0 - greater_or_equal).abs();
|
||||
(less_than, less_or_equal, greater_or_equal, greater_than)
|
||||
};
|
||||
Some(HyperGeometricProb {
|
||||
exactly,
|
||||
less_than,
|
||||
less_or_equal,
|
||||
greater_than,
|
||||
greater_or_equal,
|
||||
})
|
||||
let greater_than = (input.sample_successes + 1..=input.sample_size.min(input.successes))
|
||||
.map(|i| {
|
||||
hyper_geometric_exactly(&HyperGeometricInput {
|
||||
population_size: input.population_size,
|
||||
successes: input.successes,
|
||||
sample_size: input.sample_size,
|
||||
sample_successes: i,
|
||||
})
|
||||
})
|
||||
.sum::<f64>()
|
||||
.abs();
|
||||
let greater_or_equal = greater_than + exactly;
|
||||
let less_or_equal = (1.0 - greater_than).abs();
|
||||
let less_than = (1.0 - greater_or_equal).abs();
|
||||
(less_than, less_or_equal, greater_or_equal, greater_than)
|
||||
};
|
||||
HyperGeometricProb {
|
||||
exactly,
|
||||
less_than,
|
||||
less_or_equal,
|
||||
greater_than,
|
||||
greater_or_equal,
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct BinomialProb {
|
||||
pub exactly: f64,
|
||||
pub less_than: f64,
|
||||
pub less_or_equal: f64,
|
||||
pub greater_than: f64,
|
||||
pub greater_or_equal: f64,
|
||||
}
|
||||
|
||||
pub fn binomial(
|
||||
pub struct BinomialInput {
|
||||
success_probability: f64,
|
||||
trials_number: u8,
|
||||
successes_number: u8,
|
||||
) -> Option<BinomialProb> {
|
||||
if successes_number > trials_number {
|
||||
None
|
||||
} else {
|
||||
let (p_powers, pc_powers) = powers(success_probability, trials_number);
|
||||
let exactly = binom_exactly(success_probability, trials_number, successes_number);
|
||||
None
|
||||
}
|
||||
|
||||
impl BinomialInput {
|
||||
pub fn new(success_probability: f64, trials_number: u8, successes_number: u8) -> Option<Self> {
|
||||
if success_probability < 0.0
|
||||
|| success_probability > 1.0
|
||||
|| successes_number > trials_number
|
||||
{
|
||||
None
|
||||
} else {
|
||||
Some(Self {
|
||||
success_probability,
|
||||
trials_number,
|
||||
successes_number,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug, PartialEq)]
|
||||
pub struct BinomialProb {
|
||||
pub exactly: f64,
|
||||
pub less_than: f64,
|
||||
pub less_or_equal: f64,
|
||||
pub greater_than: f64,
|
||||
pub greater_or_equal: f64,
|
||||
}
|
||||
|
||||
pub fn binomial(input: BinomialInput) -> BinomialProb {
|
||||
let (p_powers, pc_powers) = powers(input.success_probability, input.trials_number);
|
||||
let exactly = binomial_exactly(&input, &p_powers, &pc_powers);
|
||||
let (less_than, less_or_equal, greater_or_equal, greater_than) =
|
||||
if input.successes_number < input.trials_number / 2 {
|
||||
let less_than = (0..input.successes_number)
|
||||
.map(|i| {
|
||||
binomial_exactly(
|
||||
&BinomialInput {
|
||||
success_probability: input.success_probability,
|
||||
trials_number: input.trials_number,
|
||||
successes_number: i,
|
||||
},
|
||||
&p_powers,
|
||||
&pc_powers,
|
||||
)
|
||||
})
|
||||
.sum::<f64>()
|
||||
.abs();
|
||||
let less_or_equal = less_than + exactly;
|
||||
let greater_or_equal = (1.0 - less_than).abs();
|
||||
let greater_than = (1.0 - less_or_equal).abs();
|
||||
(less_than, less_or_equal, greater_or_equal, greater_than)
|
||||
} else {
|
||||
let greater_than = (input.successes_number + 1..=input.trials_number)
|
||||
.map(|i| {
|
||||
binomial_exactly(
|
||||
&BinomialInput {
|
||||
success_probability: input.success_probability,
|
||||
trials_number: input.trials_number,
|
||||
successes_number: i,
|
||||
},
|
||||
&p_powers,
|
||||
&pc_powers,
|
||||
)
|
||||
})
|
||||
.sum::<f64>()
|
||||
.abs();
|
||||
let greater_or_equal = greater_than + exactly;
|
||||
let less_or_equal = (1.0 - greater_than).abs();
|
||||
let less_than = (1.0 - greater_or_equal).abs();
|
||||
(less_than, less_or_equal, greater_or_equal, greater_than)
|
||||
};
|
||||
BinomialProb {
|
||||
exactly,
|
||||
less_than,
|
||||
less_or_equal,
|
||||
greater_than,
|
||||
greater_or_equal,
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -83,65 +183,49 @@ pub fn binomial(
|
|||
///
|
||||
/// The formula is choose(successes, sample_successes) * choose(population_size - successes,
|
||||
/// sample_size - sample_successes) / choose(population_size, sample_size)
|
||||
fn hyper_geometric_exactly(
|
||||
population_size: u8,
|
||||
successes: u8,
|
||||
sample_size: u8,
|
||||
sample_successes: u8,
|
||||
) -> f64 {
|
||||
if population_size == successes {
|
||||
return if sample_successes == sample_size {
|
||||
fn hyper_geometric_exactly(input: &HyperGeometricInput) -> f64 {
|
||||
if input.population_size == input.successes {
|
||||
return if input.sample_successes == input.sample_size {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
}
|
||||
if successes == 0 {
|
||||
return if sample_successes == 0 { 1.0 } else { 0.0 };
|
||||
if input.successes == 0 {
|
||||
return if input.sample_successes == 0 {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
}
|
||||
// On top we have: successes!, (population_size - successes)!, sample_size! and
|
||||
// (population_size - sample_size)!
|
||||
let top_factors = (1..=successes)
|
||||
.chain(1..=(population_size - successes))
|
||||
.chain(1..=sample_size)
|
||||
.chain(1..=(population_size - sample_size))
|
||||
let top_factors = (1..=input.successes)
|
||||
.chain(1..=(input.population_size - input.successes))
|
||||
.chain(1..=input.sample_size)
|
||||
.chain(1..=(input.population_size - input.sample_size))
|
||||
.flat_map(|n| factorize(n))
|
||||
.fold(HashMap::<u8, u8>::new(), |mut counts, i| {
|
||||
*counts.entry(i).or_default() += 1;
|
||||
counts
|
||||
});
|
||||
.fold(HashMap::<u8, u8>::new(), group_factors);
|
||||
|
||||
// On bottom we have: sample_successes!, (successes - sample_successes)!
|
||||
// (sample_size - sample_successes)!, (population_size - successes - sample_size + sample_successes)!
|
||||
// and population_size!
|
||||
let bot_factors = (1..=sample_successes)
|
||||
.chain(1..=(successes - sample_successes))
|
||||
.chain(1..=(sample_size - sample_successes))
|
||||
let bot_factors = (1..=input.sample_successes)
|
||||
.chain(1..=(input.successes - input.sample_successes))
|
||||
.chain(1..=(input.sample_size - input.sample_successes))
|
||||
.chain(
|
||||
1..=((population_size as u16 + sample_successes as u16
|
||||
- successes as u16
|
||||
- sample_size as u16) as u8),
|
||||
1..=((input.population_size as u16 + input.sample_successes as u16
|
||||
- input.successes as u16
|
||||
- input.sample_size as u16) as u8),
|
||||
)
|
||||
.chain(1..=population_size)
|
||||
.chain(1..=input.population_size)
|
||||
.flat_map(|n| factorize(n))
|
||||
.fold(HashMap::<u8, u8>::new(), |mut counts, i| {
|
||||
counts.entry(i).and_modify(|count| *count += 1).or_insert(1);
|
||||
counts
|
||||
});
|
||||
.fold(HashMap::<u8, u8>::new(), group_factors);
|
||||
|
||||
let (top_factors, bot_factors) = simplify(top_factors, bot_factors);
|
||||
|
||||
let top_product: f64 = top_factors
|
||||
.into_iter()
|
||||
.flat_map(|(f, count)| repeat(f).take(count as usize))
|
||||
.map(|f| f as f64)
|
||||
.product();
|
||||
|
||||
let bot_product: f64 = bot_factors
|
||||
.into_iter()
|
||||
.flat_map(|(f, count)| repeat(f).take(count as usize))
|
||||
.map(|f| f as f64)
|
||||
.product();
|
||||
let top_product = product(top_factors);
|
||||
let bot_product = product(bot_factors);
|
||||
|
||||
top_product / bot_product
|
||||
}
|
||||
|
|
@ -149,19 +233,55 @@ fn hyper_geometric_exactly(
|
|||
/// Computes the probability of getting exactly `successes_number` within `trials_number` given
|
||||
/// that the success probability is `success_probability`.
|
||||
///
|
||||
/// The formula is choose(successes_number, trials_number) * (success_probability)^successes_number
|
||||
/// The formula is choose(trials_number, successes_number) * (success_probability)^successes_number
|
||||
/// * (1 - success_probability)^(trials_number - successes_number)
|
||||
fn binom_exactly(success_probability: f64, trials_number: u8, successes_number: u8) -> f64 {
|
||||
0.0
|
||||
fn binomial_exactly(input: &BinomialInput, p_powers: &[f64], pc_powers: &[f64]) -> f64 {
|
||||
if input.success_probability == 0.0 {
|
||||
return if input.successes_number == 0 {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
}
|
||||
if input.success_probability == 1.0 {
|
||||
return if input.successes_number == input.trials_number {
|
||||
1.0
|
||||
} else {
|
||||
0.0
|
||||
};
|
||||
}
|
||||
choose(input.trials_number, input.successes_number)
|
||||
* p_powers[input.successes_number as usize]
|
||||
* pc_powers[(input.trials_number - input.successes_number) as usize]
|
||||
}
|
||||
|
||||
fn powers(p: f64, N: u8) -> (Vec<f64>, Vec<f64>) {
|
||||
let mut p_powers = Vec::with_capacity((N + 1) as usize);
|
||||
let mut pc_powers = Vec::with_capacity((N + 1) as usize);
|
||||
fn choose(n: u8, k: u8) -> f64 {
|
||||
// On top we have: n!
|
||||
let top_factors = (1..=n)
|
||||
.flat_map(|n| factorize(n))
|
||||
.fold(HashMap::<u8, u8>::new(), group_factors);
|
||||
|
||||
// On bottom we have: k!, (n - k)!
|
||||
let bot_factors = (1..=k)
|
||||
.chain(1..=(n - k))
|
||||
.flat_map(|n| factorize(n))
|
||||
.fold(HashMap::<u8, u8>::new(), group_factors);
|
||||
|
||||
let (top_factors, bot_factors) = simplify(top_factors, bot_factors);
|
||||
|
||||
let top_product = product(top_factors);
|
||||
let bot_product = product(bot_factors);
|
||||
|
||||
top_product / bot_product
|
||||
}
|
||||
|
||||
fn powers(p: f64, n: u8) -> (Vec<f64>, Vec<f64>) {
|
||||
let mut p_powers = Vec::with_capacity((n + 1) as usize);
|
||||
let mut pc_powers = Vec::with_capacity((n + 1) as usize);
|
||||
|
||||
let mut p_power = 1.0;
|
||||
let mut pc_power = 1.0;
|
||||
for _ in 0..N + 1 {
|
||||
for _ in 0..n + 1 {
|
||||
p_powers.push(p_power);
|
||||
pc_powers.push(pc_power);
|
||||
p_power = p_power * p;
|
||||
|
|
@ -170,6 +290,19 @@ fn powers(p: f64, N: u8) -> (Vec<f64>, Vec<f64>) {
|
|||
(p_powers, pc_powers)
|
||||
}
|
||||
|
||||
fn group_factors(mut counts: HashMap<u8, u8>, i: u8) -> HashMap<u8, u8> {
|
||||
*counts.entry(i).or_default() += 1;
|
||||
counts
|
||||
}
|
||||
|
||||
fn product(factors: HashMap<u8, u8>) -> f64 {
|
||||
factors
|
||||
.into_iter()
|
||||
.flat_map(|(f, count)| repeat(f).take(count as usize))
|
||||
.map(|f| f as f64)
|
||||
.product()
|
||||
}
|
||||
|
||||
/// Simplify factors for a fraction.
|
||||
///
|
||||
/// This assumes factors are already prime factors.
|
||||
|
|
@ -259,7 +392,10 @@ fn factorize(n: u8) -> FactorIter<'static> {
|
|||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use crate::calc::hyper_geometric_exactly;
|
||||
use crate::calc::{
|
||||
BinomialInput, BinomialProb, HyperGeometricInput, HyperGeometricProb, binomial,
|
||||
binomial_exactly, hyper_geometric, hyper_geometric_exactly, powers,
|
||||
};
|
||||
|
||||
use super::factorize;
|
||||
|
||||
|
|
@ -280,18 +416,80 @@ mod test {
|
|||
|
||||
#[test]
|
||||
fn test_hypergeometric_exact_all_successes() {
|
||||
assert_eq!(hyper_geometric_exactly(10, 10, 5, 5), 1.0);
|
||||
assert_eq!(hyper_geometric_exactly(10, 10, 5, 4), 0.0);
|
||||
let input = &HyperGeometricInput::new(10, 10, 5, 5).unwrap();
|
||||
assert_eq!(hyper_geometric_exactly(input), 1.0);
|
||||
let input = &HyperGeometricInput::new(10, 10, 5, 4).unwrap();
|
||||
assert_eq!(hyper_geometric_exactly(input), 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hypergeometric_exact_no_successes() {
|
||||
assert_eq!(hyper_geometric_exactly(10, 0, 5, 0), 1.0);
|
||||
assert_eq!(hyper_geometric_exactly(10, 0, 5, 1), 0.0);
|
||||
let input = &HyperGeometricInput::new(10, 0, 5, 0).unwrap();
|
||||
assert_eq!(hyper_geometric_exactly(input), 1.0);
|
||||
let input = &HyperGeometricInput::new(10, 0, 5, 1).unwrap();
|
||||
assert_eq!(hyper_geometric_exactly(input), 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hypergeometric_exact() {
|
||||
assert_eq!(hyper_geometric_exactly(10, 3, 5, 2), 5.0 / 12.0);
|
||||
let input = &HyperGeometricInput::new(10, 3, 5, 2).unwrap();
|
||||
assert_eq!(hyper_geometric_exactly(input), 5.0 / 12.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_hypergeometric_aces_poker() {
|
||||
let input = HyperGeometricInput::new(52, 4, 5, 4).unwrap();
|
||||
let exact = 1.846892603195124e-5;
|
||||
assert_eq!(
|
||||
hyper_geometric(input),
|
||||
HyperGeometricProb {
|
||||
exactly: exact,
|
||||
less_than: 1.0 - exact,
|
||||
less_or_equal: 1.0,
|
||||
greater_than: 0.0,
|
||||
greater_or_equal: exact
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_binom_exact_all_success() {
|
||||
let (p_powers, pc_powers) = powers(1.0, 5);
|
||||
let input = &BinomialInput::new(1.0, 5, 5).unwrap();
|
||||
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 1.0);
|
||||
let input = &BinomialInput::new(1.0, 5, 4).unwrap();
|
||||
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_binom_exact_no_success() {
|
||||
let (p_powers, pc_powers) = powers(0.0, 5);
|
||||
let input = &BinomialInput::new(0.0, 5, 0).unwrap();
|
||||
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 1.0);
|
||||
let input = &BinomialInput::new(0.0, 5, 1).unwrap();
|
||||
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_binomial_exact() {
|
||||
let (p_powers, pc_powers) = powers(0.5, 5);
|
||||
let input = &BinomialInput::new(0.5, 5, 3).unwrap();
|
||||
assert_eq!(binomial_exactly(input, &p_powers, &pc_powers), 10.0 / 32.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_binomial() {
|
||||
// 10.0 / 32.0
|
||||
let input = BinomialInput::new(0.5, 5, 3).unwrap();
|
||||
assert_eq!(
|
||||
binomial(input),
|
||||
BinomialProb {
|
||||
exactly: 10.0 / 32.0,
|
||||
less_than: 16.0 / 32.0,
|
||||
less_or_equal: 26.0 / 32.0,
|
||||
greater_than: 6.0 / 32.0,
|
||||
greater_or_equal: 16.0 / 32.0,
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ use leptos::prelude::{
|
|||
use leptos::{IntoView, component, view};
|
||||
use leptos_fluent::move_tr;
|
||||
|
||||
use crate::calc::{binomial, hyper_geometric};
|
||||
use crate::calc::{BinomialInput, HyperGeometricInput, binomial, hyper_geometric};
|
||||
|
||||
#[component]
|
||||
pub fn HyperCalculator() -> impl IntoView {
|
||||
|
|
@ -15,12 +15,13 @@ pub fn HyperCalculator() -> impl IntoView {
|
|||
let (sample, set_sample) = signal(0u8);
|
||||
let (sample_successes, set_sample_successes) = signal(0u8);
|
||||
let result = move || {
|
||||
hyper_geometric(
|
||||
HyperGeometricInput::new(
|
||||
population.get(),
|
||||
successes.get(),
|
||||
sample.get(),
|
||||
sample_successes.get(),
|
||||
)
|
||||
.map(hyper_geometric)
|
||||
.unwrap_or_default()
|
||||
};
|
||||
view! {
|
||||
|
|
@ -119,11 +120,12 @@ pub fn BinomCalculator() -> impl IntoView {
|
|||
let (trials_number, set_trials_number) = signal(0u8);
|
||||
let (successes_number, set_successes_number) = signal(0u8);
|
||||
let result = move || {
|
||||
binomial(
|
||||
BinomialInput::new(
|
||||
success_probability.get(),
|
||||
trials_number.get(),
|
||||
successes_number.get(),
|
||||
)
|
||||
.map(binomial)
|
||||
.unwrap_or_default()
|
||||
};
|
||||
view! {
|
||||
|
|
@ -135,6 +137,7 @@ pub fn BinomCalculator() -> impl IntoView {
|
|||
type="number"
|
||||
min=0
|
||||
max=1
|
||||
prop:step=0.1
|
||||
prop:value=success_probability
|
||||
on:input:target=move |ev| {
|
||||
set_success_probability.set(ev.target().value().parse().unwrap_or_default())
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue